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Overall Approach
1. Define speed targets (0,46m FLOPS on Apollo 3)
2. Start with vanilla AlexNet
3. Define quality targets (-20% of AlexNet)
4. Meta-learning: reduce the net to meet the quality targets (AUC)

a. Use validation set to evaluate quality

Using AlexNet for Emotion Recognition done in [2].

Problem
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Results
1. Found an intermediate model 16 times faster with -20% AUC loss
2. Final model did not perform to expectations.
3. Did not actually build a robot ☹

Analysis

Approach

Data

What does it take to build an embedded device that 
“smiles back” at you?

Google Facial Expression Comparison Dataset
We used 8,000 (out of 156,000) images.

Final Architecture
3 Convolution layers (the 1st layer large stride), 3 MaxPool Layers, 1 Batch 
Norm layer, 1 fully connected layer.  Dropout on the FCN.

We ran the meta-learning 
algorithm manually; automating it 
is left for future work.

Saliency maps are consistent with psychology studies [Duchenne, 1862]. 
The model attends most to the cheeks and eyes; rarely to the mouth.

Model Set AUC Δ AUC
Accur
. Prec Recall FLOPS Est runtime

Baseline AlexNet test 0.7 0 0.72 0.53 0.52 82.7 mln 3min 1s

Reduced AlexNet val 0.67 -15% 0.68 0.45 0.41 5.1 mln

Reduced AlexNet test 0.66 -20% 0.69 0.47 0.44 5.1 mln 11s

Embedded 3-layer val 0.69 -5% 0.7 0.48 0.49 1.3 mln

Embedded 3-layer test 0.62 -40% 0.64 0.39 0.39 1.3 mln 2.9s

Challenges:
● Embedded devices have limited hardware
● Neural networks require lots of computation

There’s hope:
● Reading sensor data (cameras) requires little 

power [1]
● Training can be done offline
● TensorFlow Lite proven to run on Arduino [1]

Assumption:
● An embedded device Apollo3 can perform 

0.46 mln FLOPS [benchmarks]

Meta-learningPreparation:
1. Labeling via MTurk.  Only 1 label, which resulted 

in 9% error.
2. Center-Cropping
3. Resizing to 224x224.
4. Augmentation (5 ways): Blur, noise, shift, 

rotations, color, lighting.

MaxPool + Dropout

4

Use A* search on model space (not hyperparameters!) with objective to 
minimize FLOPS while maintaining quality 𝛽0
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