
Linux Drivers Static Verifier
Pavel Shved

Institute for System Programming of Russian Academy of Sciences

Challenge

Increase the quality of Linux Kernel device drivers by building an
open framework for static verification.

Kernel

Bugs

Driver

Crash!

Corner
cases

Bugs in drivers of external and internal
devices lead to “kernel panic” (Linux
version of BSoD), since drivers are
executed with kernel privileges.

Conventional testing may miss bugs that
occur in “corner cases” only, because it’s
hard to alter the behavior of the device
for comprehensive testing of a driver.

To employ static verification we do not
need equipment at all, verifying that no
crash happens even if the equipment is
broken or malicious!

Static reachability verification of drivers

A lot of rules a kernel hacker must obey may be explicated as safety properties (“at any
time during an execution a property must hold”). To verify a driver against them, we
should:

automatically construct an environment model (a C code that invokes handlers in the
driver source code like the Kernel does during an execution);
insert auxiliary code that models behavior of a certain Kernel subsystem;
insert assertions that check if the rule is violated.

main()

invoke handlers

check properties
assert()Rule

Driver driver C code

main()

assert()

Verify
reachability

How??

Research objective: create a static verifier capable enough to
verify Linux device drivers against a hundred of different rules,
consuming sensible CPU time and memory.

Why we use “Heavyweight” approach

“Heavyweight”

fast

complete

precise

“lightweight”

fast

complete

precise

There are hundreds of correctness rules the source code of a driver
should follow. In addition to generic rules any C program should
obey, there also is a lot of Linux driver-specific rules; they evolve
with time as the Kernel core gets modified. To perform the
complete analysis of a driver, the context it works in should be
modeled, which also evolves with time and changes across driver
subsystems.

Transparent way to specify a property to verify and the context the
code is executed in is a native feature of “heavyweight” approach
to static analysis. Therefore, we use “heavyweight” verifiers to
check Linux drivers; such tools include: CPAchecker, CBMC, BLAST,
SLAM. The major drawback of “heavyweight” verification is its
speed, which is low, compared to “lightweight” approach used in
Coverity, Klockwork Insight, SVACE etc.

Experimental setup

Linux Kernel

........

Verify

main()

assert()

driver C code

main()

assert()

driver C code

main()

assert()

driver C code

main()

assert()

driver C code

main()

assert()

driver C code

main()

assert()

driver C code

~2700

main()

assert()

driver C code

- Add environment
- Instrument rules

15min.
1 Gb

........

Safe

Unsafe

FAILURE!

Compare

Previous
version

We implement our new verification algorithms
as patches to BLAST (“Berkeley Lazy
Abstraction Software verification Tool”). BLAST
was released in 2002 by a team in Berkeley,
and we currently maintain it.

We consider the effect of our improvements
“positive” if, on a large scale, the tool works
faster or more precise, or finds more errors,
retaining the “heavyweight” values (see the
red gradient triangle above).

To carry out the comparison of results on such a
massive scale, we have developed a tool that
visualizes differences between several
evaluations.

Research + Development
In addition to researching new
verification algorithms, we also spend
a fraction of our time to optimize the
tool we use, because:

an unoptimized tool biases
measurements of “heavyweight”
verification applicability;
speed effect of novel static
verification algorithms would be
measured less precisely.

We deliberately addressed several
issues in BLAST, and achieved the
following:

fixed errors in configurable analysis
yielded 25% more bugs found,
which were elicited before;
improved speed of interaction with
external SMT solvers (integration
overhead is now negligible);
tuned an open-source SMT solver
(CVC3) for maximum performance
the improved interaction with SMT
solvers allowed us to eliminate
non-free components from BLAST;
improved speed of trace analysis
heuristic (less unnecessary SMT
solver calls).

The effect of these achievements on
the number of errors found and on
time it takes to verify the drivers is
shown here →

08:31 s.

Time to verify a complex driver

Time to verify an average driver

8 bugs found

42 bugs found

(average verification time per driver; 2160 drivers)

(average verification time per driver; 12 drivers verified in 2 to 15 min.)

8.5x

27.2x

02:57 s. 0:21 s.

0:19 s.

Completeness improvement

BLAST 2.6 BLAST 2.7

Verification of certain operations with sets

A goal was to support verification of a C language extension with set operations (∪, ∩, \,
∈, ∅). Such operations could be used to model mutex locks/unlocks or memory
allocation precisely, without alias analysis. We tried to create an algorithm that
forward-tracks structures of user-specified set structures (i.e. locked mutexes, allocated
memory chunks) used in the instrumented source code.

Our studies have demonstrated that the speed did improve over the “undetermined
branching” approach. Unfortunately, we also found out that forward-tracking set
structures imposed restrictions on control-flow of the programs, and didn’t scale well due
to overly complicated formulæ for interpolating prover to handle. Thus, we decided not
to use this extension.

Current research

Currently, we determine the C features semantics should be
verified correctly of, in order to verify Linux drivers with significant
quality. We explicate more Kernel rules and describe and collect the issues
with completeness and precision to address the most substantial of them.

Currently, the most likely C features to support are:

fast and precise interprocedural alias analysis with pointer type casting
support;
calling functions by pointers.

We already started works on alias analysis.

Pointer aliases in a mutex lock model

void mutex_lock(struct mutex *a)
{ assert(! a->locked);
a->locked = 1; }

void mutex_unlock(struct mutex *b)
{ assert(b->locked);
b->locked = 0; }

int main()
{ struct mutex *c;
mutex_lock(c);
mutex_unlock(c); }

Here’s an illustration
how fast and precise alias analysis
would help us to model correctness
rules. Suppose we are to implement
a lock()/unlock() correctness rule
for mutexes. A mutex in the Linux kernel
is a plain structure, and it is passed by
pointer to the functions that operate on it.

Assume that a straightforward model
checks a value of a special locked field
in the model of such a structure. However,
to verify a sample program presented
on the figure to the right, a tool should
devise that formal parameters a and
b are actually aliases of c, and that the
corresponding fields also alias each other.

Currently, the algorithm that determines such an aliasing relation used in BLAST is
prohibitively slow, but without it the verification of the code on the figure yields a false
positive.

Acknowledgments

The team that works on Linux Driver Verification consists of Vadim Mutilin,
Eugene Novikov, Pavel Shved, and Alexey Khoroshilov. We work at the
Institute for System Programming of Russian Academy of Sciences
(http://ispras.ru/en/).

Visit the project website at http://forge.ispras.ru/projects/ldv/

http://forge.ispras.ru/projects/ldv ← download sources (Apache license) write to me if you have any questions → shved@ispras.ru

